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To our students



PREFACE

Fundamentals of Statistical Reasoning in Education 4e, like the first three editions, is
written largely with students of education in mind. Accordingly, we draw primarily
on examples and issues found in school settings, such as those having to do with
instruction, learning, motivation, and assessment. Our emphasis on educational
applications notwithstanding, we are confident that readers will find Fundamentals 4e
of general relevance to other disciplines in the behavioral sciences as well.

Our overall objective is to provide clear and comfortable exposition, engaging
examples, and a balanced presentation of technical considerations, all with a focus
on conceptual development. Required mathematics call only for basic arithmetic and
an elementary understanding of simple equations. For those who feel in need of a
brushup, we provide a math review in Appendix A. Statistical procedures
are illustrated in step-by-step fashion, and end-of-chapter problems give students
ample opportunity for practice and self-assessment. (Answers to roughly half of
these problems are found in Appendix B.) Almost all chapters include an illustrative
case study and a “Reading the Research” section showing how a particular concept
or procedure appears in the research literature. The result is a text that should
engage all students, whether they approach their first course in statistics with
confidence or apprehension.

You will find several changes in Fundamentals 4e:

• Guided by instructor feedback, we now use Y instead of Y as the symbol for
the predicted value of Y in our treatment of regression analysis. Further, we
now explicitly address the meaning, and importance, of residuals in regression
analysis.

• A difficult decision for us was whether—and if so, how—to integrate com-
puter applications into Fundamentals. In the end, we agreed that it is nei-
ther our intention nor our place to teach students in a first course the use
of statistical software. If the computer is to be introduced in such a course,
it is for the instructor to decide how to go about doing so. That said,
we chose to illustrate (on the supporting website) the use of SPSS, a statis-
tical package that enjoys considerable popularity in the education research
community. Sample output provided with commentary, all within the con-
text of the statistical procedures and tests covered in Fundamentals 4e. For
the student who has access to SPSS and wishes to replicate our results (or
simply explore this software further), we also provide a link to the data on
which our applications are based.

• All chapters have benefited from the careful editing, along with the occa-
sional clarification or elaboration, that one should expect of a new edition.

Fundamentals 4e is still designed as a “one semester” book. We intentionally
sidestep topics that few introductory courses cover (e.g., factorial analysis of variance,
repeated measures analysis of variance, multiple regression). At the same time, we
incorporate effect size and confidence intervals throughout, which today are
regarded as essential to good statistical practice.
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Instructor’s Guide

A guide for instructors can be found on the Wiley website at www.wiley.com/
college/coladarci. This guide contains:

• Suggestions for adapting Fundamentals 4e to one’s course.

• Helpful Internet resources on statistics education.

• The remaining answers to end-of-chapter problems.

• SPSS output, with commentary (and supporting data sets), presented within
the context of the various statistical procedures and tests in Fundamentals 4e.

• An extensive bank of multiple-choice items.

• Supplemental material (“FYI”) providing elaboration or further illustration
of procedures and principles in the text (e.g., the derivation of a formula,
the equivalence of the t test, and one-way ANOVA when k 2).

Acknowledgments

For their thoughtful comments and suggestions toward the preparation of Funda-
mentals 4e, we are grateful to Russel Almond, Florida State University; Betsy
Becker, Florida State University; Carolyn L. Pearson, University of Arkansas at
Little Rock; Tufan Tiglioglu, Alvernia University; and Shihfen Tu, University of
Maine. The following reviewers gave invaluable feedback on earlier editions
of Fundamentals, the positive result of which is reflected in the present edition as
well: Terry Ackerman, University of Illinois, Urbana; Deb Allen, University of
Maine; Tasha Beretvas, University of Texas at Austin; Shelly Blozis, University
of Texas at Austin; Elliot Bonem, Eastern Michigan State University; David L.
Brunsma, University of Alabama in Huntsville; Daniel J. Calcagnettie, Fairleigh
Dickinson University; David Chattin, St. Joseph’s College; Grant Cioffi, Uni-
versity of New Hampshire; Stephen Cooper, Glendale Community College; Brian
Doore, University of Maine; David X. Fitt, Temple University; Shawn Fitzgerald,
Kent State University; Gary B. Forbach, Washburn University; Roger B. Frey,
University of Maine; Jane Halpert, DePaul University; Larry V. Hedges,
Northwestern University; Mark Hoyert, Indiana University Northwest; Jane Loeb,
University of Illinois, Larry H. Ludlow, Boston College; David S. Malcolm,
Fordham University; Terry Malcolm, Bloomfield College; Robert Markley, Fort
Hayes State University; William Michael, University of Southern California; Wayne
Mitchell, Southwest Missouri State University; David Mostofsky, Boston University;
Ken Nishita, California State University at Monterey Bay; Robbie Pittman, Western
Carolina University; Phillip A. Pratt, University of Maine; Katherine Prenovost,
University of Kansas; Bruce G. Rogers, University of Northern Iowa; N. Clayton
Silver, University of Nevada; Leighton E. Stamps, University of New Orleans; Irene
Trenholme, Elmhurst College; Shihfen Tu, University of Maine; Gail Weems,
University of Memphis; Kelly Kandra, University of North Carolina at Chapel Hill;
James R. Larson, Jr., University of Illinois at Chicago; Julia Klausili, University of
Texas at Dallas; Hiroko Arikawa, Forest Institute of Professional Psychology; James

Preface v

http://www.wiley.com/college/coladarci
http://www.wiley.com/college/coladarci


Petty, University of Tennessee at Martin; Martin R. Deschenes, College of William
and Mary; Kathryn Oleson, Reed College; Ward Rodriguez, California State
University, Easy Bay; Gail D. Hughes, University of Arkansas at Little Rock; and
Lea Witta, University of Central Florida.

We wish to thank John Moody, Derry Cooperative School District (NH);
Michael Middleton, University of New Hampshire; and Charlie DePascale,
National Center for the Improvement of Educational Assessment, each of whom
provided data sets for some of the case studies.

We are particularly grateful for the continued support and encouragement
provided by Robert Johnston of John Wiley & Sons, and to Brittany Cheetham,
Kristen Mucci, Preeti Longia Sinha, Jolene Ling, and all others associated with
this project.

Theodore Coladarci
Casey D. Cobb

vi Preface



CONTENTS

Chapter 1 Introduction 1

1.1 Why Statistics? 1
1.2 Descriptive Statistics 2
1.3 Inferential Statistics 3
1.4 The Role of Statistics in

Educational Research 4
1.5 Variables and Their

Measurement 5
1.6 Some Tips on Studying

Statistics 8

PART 1

DESCRIPTIVE STATISTICS 13

Chapter 2 Frequency
Distributions 14

2.1 Why Organize Data? 14
2.2 Frequency Distributions for

Quantitative Variables 14
2.3 Grouped Scores 15
2.4 Some Guidelines for Forming

Class Intervals 17
2.5 Constructing a Grouped-Data

Frequency Distribution 18
2.6 The Relative Frequency

Distribution 19
2.7 Exact Limits 21
2.8 The Cumulative Percentage

Frequency Distribution 22
2.9 Percentile Ranks 23
2.10 Frequency Distributions for

Qualitative Variables 25
2.11 Summary 26

Chapter 3 Graphic
Representation 34

3.1 Why Graph Data? 34
3.2 Graphing Qualitative Data: The

Bar Chart 34
3.3 Graphing Quantitative Data: The

Histogram 35
3.4 Relative Frequency and

Proportional Area 39
3.5 Characteristics of Frequency

Distributions 41
3.6 The Box Plot 44
3.7 Summary 45

Chapter 4 Central Tendency 52

4.1 The Concept of Central Tendency 52
4.2 The Mode 52
4.3 The Median 53
4.4 The Arithmetic Mean 54
4.5 Central Tendency and

Distribution Symmetry 57
4.6 Which Measure of Central

Tendency to Use? 59
4.7 Summary 59

Chapter 5 Variability 66

5.1 Central Tendency Is Not Enough:
The Importance of Variability 66

5.2 The Range 67
5.3 Variability and Deviations From

the Mean 68
5.4 The Variance 69
5.5 The Standard Deviation 70

vii



5.6 The Predominance of the
Variance and Standard Deviation 71

5.7 The Standard Deviation and the
Normal Distribution 72

5.8 Comparing Means of Two
Distributions: The Relevance of
Variability 73

5.9 In the Denominator:
n Versus n − 1 75

5.10 Summary 76

Chapter 6 Normal Distributions
and Standard Scores 81

6.1 A Little History: Sir Francis
Galton and the Normal Curve 81

6.2 Properties of the Normal Curve 82
6.3 More on the Standard Deviation

and the Normal Distribution 82
6.4 z Scores 84
6.5 The Normal Curve Table 87
6.6 Finding Area When the Score Is

Known 88
6.7 Reversing the Process: Finding

Scores When the Area Is Known 91
6.8 Comparing Scores From Different

Distributions 93
6.9 Interpreting Effect Size 94
6.10 Percentile Ranks and the Normal

Distribution 96
6.11 Other Standard Scores 97
6.12 Standard Scores Do Not

“Normalize” a Distribution 98
6.13 The Normal Curve and

Probability 98
6.14 Summary 99

Chapter 7 Correlation 106

7.1 The Concept of Association 106
7.2 Bivariate Distributions and

Scatterplots 106
7.3 The Covariance 111
7.4 The Pearson r 117

7.5 Computation of r: The Calculating
Formula 118

7.6 Correlation and Causation 120
7.7 Factors Influencing Pearson r 122
7.8 Judging the Strength of

Association: r2 125
7.9 Other Correlation Coefficients 127
7.10 Summary 127

Chapter 8 Regression and
Prediction 134

8.1 Correlation Versus Prediction 134
8.2 Determining the Line of

Best Fit 135
8.3 The Regression Equation in

Terms of Raw Scores 138
8.4 Interpreting the Raw-Score Slope 141
8.5 The Regression Equation in

Terms of z Scores 141
8.6 Some Insights Regarding

Correlation and Prediction 142
8.7 Regression and Sums of Squares 145
8.8 Residuals and Unexplained

Variation 147
8.9 Measuring the Margin of

Prediction Error: The Standard
Error of Estimate 148

8.10 Correlation and Causality
(Revisited) 152

8.11 Summary 153

PART 2

INFERENTIAL STATISTICS 163

Chapter 9 Probability and
Probability
Distributions 164

9.1 Statistical Inference: Accounting
for Chance in Sample Results 164

9.2 Probability: The Study of Chance 165
9.3 Definition of Probability 166
9.4 Probability Distributions 168

viii Contents



9.5 The OR/addition Rule 169
9.6 The AND/Multiplication Rule 171
9.7 The Normal Curve as a

Probability Distribution 172
9.8 “So What?”—Probability

Distributions as the Basis for
Statistical Inference 174

9.9 Summary 175

Chapter 10 Sampling
Distributions 179

10.1 From Coins to Means 179
10.2 Samples and Populations 180
10.3 Statistics and Parameters 181
10.4 Random Sampling Model 181
10.5 Random Sampling in Practice 183
10.6 Sampling Distributions of Means 184
10.7 Characteristics of a Sampling

Distribution of Means 185
10.8 Using a Sampling Distribution

of Means to Determine
Probabilities 188

10.9 The Importance of Sample
Size (n) 191

10.10 Generality of the Concept of a
Sampling Distribution 193

10.11 Summary 193

Chapter 11 Testing Statistical
Hypotheses About μ
When σ Is Known:
The One-Sample
z Test 199

11.1 Testing a Hypothesis About μ:
Does “Homeschooling” Make a
Difference? 199

11.2 Dr. Meyer’s Problem in a
Nutshell 200

11.3 The Statistical Hypotheses:
H0 and H1 201

11.4 The Test Statistic z 202
11.5 The Probability of the Test

Statistic: The p Value 203

11.6 The Decision Criterion: Level of
Significance (α) 204

11.7 The Level of Significance and
Decision Error 207

11.8 The Nature and Role ofH0 andH1 209
11.9 Rejection Versus Retention ofH0 209
11.10 Statistical Significance Versus

Importance 210
11.11 Directional and Nondirectional

Alternative Hypotheses 212
11.12 The Substantive Versus

the Statistical 214
11.13 Summary 215

Chapter 12 Estimation 222

12.1 Hypothesis Testing Versus
Estimation 222

12.2 Point Estimation Versus Interval
Estimation 223

12.3 Constructing an Interval Estimate
of μ 224

12.4 Interval Width and Level of
Confidence 226

12.5 Interval Width and Sample Size 227
12.6 Interval Estimation and

Hypothesis Testing 228
12.7 Advantages of Interval

Estimation 230
12.8 Summary 230

Chapter 13 Testing Statistical
Hypotheses About μ
When σ Is Not
Known: The
One-Sample t Test 235

13.1 Reality: σ Often Is Unknown 235
13.2 Estimating the Standard Error

of the Mean 236
13.3 The Test Statistic t 237
13.4 Degrees of Freedom 238
13.5 The Sampling Distribution

of Student’s t 239
13.6 An Application of Student’s t 242

Contents ix



13.7 Assumption of Population
Normality 244

13.8 Levels of Significance Versus
p Values 244

13.9 Constructing a Confidence Interval
for μWhen σ Is Not Known 246

13.10 Summary 247

Chapter 14 Comparing the
Means of Two
Populations:
Independent
Samples 253

14.1 From One Mu (μ) to Two 253
14.2 Statistical Hypotheses 254
14.3 The Sampling Distribution of

Differences Between Means 255
14.4 Estimating σX1 X2

257
14.5 The t Test for Two Independent

Samples 259
14.6 Testing Hypotheses About Two

Independent Means: An Example 260
14.7 Interval Estimation of μ1 − μ2 262
14.8 Appraising the Magnitude of a

Difference: Measures of Effect
Size for X1−X2 264

14.9 How Were Groups Formed?
The Role of Randomization 268

14.10 Statistical Inferences and
Nonstatistical Generalizations 269

14.11 Summary 270

Chapter 15 Comparing the
Means of Dependent
Samples 278

15.1 The Meaning of “Dependent” 278
15.2 Standard Error of the Difference

Between Dependent Means 279
15.3 Degrees of Freedom 281
15.4 The t Test for Two Dependent

Samples 281
15.5 Testing Hypotheses About Two

Dependent Means: An Example 283
15.6 Interval Estimation of μD 286
15.7 Summary 287

Chapter 16 Comparing the
Means of Three or
More Independent
Samples: One-Way
Analysis of
Variance 294

16.1 Comparing More Than Two
Groups: Why Not Multiple
t Tests? 294

16.2 The Statistical Hypotheses in
One-Way ANOVA 295

16.3 The Logic of One-Way ANOVA:
An Overview 296

16.4 Alison’s Reply to Gregory 299
16.5 Partitioning the Sums of Squares 300
16.6 Within-Groups and Between-

Groups Variance Estimates 303
16.7 The F Test 304
16.8 Tukey’s “HSD” Test 306
16.9 Interval Estimation of μi − μj 308
16.10 One-Way ANOVA: Summarizing

the Steps 309
16.11 Estimating the Strength of the

Treatment Effect: Effect Size (ω̂2) 311
16.12 ANOVA Assumptions (and

Other Considerations) 312
16.13 Summary 313

Chapter 17 Inferences About the
Pearson Correlation
Coefficient 322

17.1 From μ to ρ 322
17.2 The Sampling Distribution of r

When ρ 0 322
17.3 Testing the Statistical Hypothesis

That ρ 0 324
17.4 An Example 324
17.5 In Brief: Student’s t

Distribution and Regression
Slope (b) 326

17.6 Table E 326
17.7 The Role of n in the Statistical

Significance of r 328
17.8 Statistical Significance Versus

Importance (Again) 329

x Contents



17.9 Testing Hypotheses Other Than
ρ 0 329

17.10 Interval Estimation of ρ 330
17.11 Summary 332

Chapter 18 Making Inferences
From Frequency
Data 338

18.1 Frequency Data Versus Score Data 338
18.2 A Problem Involving Frequencies:

The One-Variable Case 339
18.3 χ2: A Measure of Discrepancy

Between Expected and Observed
Frequencies 340

18.4 The Sampling Distribution of χ2 341
18.5 Completion of the Voter Survey

Problem: The χ2 Goodness-of-Fit
Test 343

18.6 The χ2 Test of a Single Proportion 344
18.7 Interval Estimate of a Single

Proportion 345
18.8 When There Are Two Variables:

The χ2 Test of Independence 347
18.9 Finding Expected Frequencies

in the Two-Variable Case 348
18.10 Calculating the Two-Variable χ2 350
18.11 The χ2 Test of Independence:

Summarizing the Steps 351
18.12 The 2 × 2 Contingency Table 352
18.13 Testing a Difference Between

Two Proportions 353
18.14 The Independence of

Observations 353
18.15 χ2 and Quantitative Variables 354
18.16 Other Considerations 355
18.17 Summary 355

Chapter 19 Statistical “Power”
(and How to
Increase It) 363

19.1 The Power of a Statistical Test 363
19.2 Power and Type II Error 364
19.3 Effect Size (Revisited) 365
19.4 Factors Affecting Power:

The Effect Size 366

19.5 Factors Affecting Power:
Sample Size 367

19.6 Additional Factors Affecting
Power 368

19.7 Significance Versus Importance 369
19.8 Selecting an Appropriate

Sample Size 370
19.9 Summary 373

Epilogue A Note on (Almost)
Assumption-Free
Tests 379

References 380

Appendix A Review of Basic
Mathematics 382

A.1 Introduction 382
A.2 Symbols and Their Meaning 382
A.3 Arithmetic Operations Involving

Positive and Negative Numbers 383
A.4 Squares and Square Roots 383
A.5 Fractions 384
A.6 Operations Involving Parentheses 385
A.7 Approximate Numbers,

Computational Accuracy, and
Rounding 386

Appendix B Answers to Selected
End-of-Chapter
Problems 387

Appendix C Statistical Tables 408

Glossary 421

Index 427

Useful Formulas 433

Contents xi





CHAPTER 1

Introduction

1.1 Why Statistics?

An anonymous sage once defined a statistician as “one who collects data and draws
confusions.” Another declared that members of this tribe occupy themselves by
“drawing mathematically precise lines from unwarranted assumptions to foregone
conclusions.” And then there is the legendary proclamation attributed (by Mark
Twain) to the 19th-century British statesman Benjamin Disraeli: “There are three
kinds of lies: lies, damned lies, and statistics.”

Are such characterizations justified? Clearly we think not! Just as every barrel
has its rotten apples, there are statisticians among us for whom these sentiments
are quite accurate. But they are the exception, not the rule. While there are end-
less reasons explaining why statistics is sometimes viewed with skepticism
(math anxiety? mistrust of the unfamiliar?), there is no doubt that when properly
applied, statistical reasoning serves to illuminate, not obscure. In short, our objec-
tive in writing this book is to acquaint you with the proper applications of statis-
tical reasoning. As a result, you will be a more informed and critical patron of the
research you read; furthermore, you will be able to conduct basic statistical ana-
lyses to explore empirical questions of your own.

Statistics merely formalizes what humans do every day. Indeed, most of the
fundamental concepts and procedures we discuss in this book have parallels in
everyday life, if somewhat beneath the surface. You may notice that there are
people of different ages (“variability”) at Eric Clapton concerts. Because Maine
summers are generally warm (“average”), you don’t bring a down parka when
you vacation there. Parents from a certain generation, you observe, tend to drive
Volvo station wagons (“association”). You believe that it is highly unlikely
(“probability”) that your professor will take attendance two days in a row, so you
skip class the day after attendance was taken. Having talked for only a few
minutes (“sample”) with a person you just met, you conclude that you like him
(“generalization,” “inference”). After getting a disappointing meal at a popular
restaurant, you wonder whether it was just an off night for the chef or the place
actually has gone downhill (“sampling variability,” “statistical significance”).

We could go on, but you probably get the point: Whether you are formally
crunching numbers or simply going about life, you employ—consciously or not—
the fundamental concepts and principles underlying statistical reasoning.

So what does formal statistical reasoning entail? As can be seen from the two-
part structure of this book, statistical reasoning has two general branches:
descriptive statistics and inferential statistics.
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1.2 Descriptive Statistics

Among first-year students who declare a major in education, what proportion are
male? Female? Do those proportions differ between elementary education and sec-
ondary education students? Upon graduation, how many obtain teaching posi-
tions? How many go on to graduate school in education? And what proportion end
up doing something unrelated to education? These are examples of questions for
which descriptive statistics can help to provide a meaningful and convenient way of
characterizing and portraying important features of the data.1 In the examples
above, frequencies and proportions will help to do the job of statistical description.

The purpose of descriptive statistics is to organize and summarize data so that
the data are more readily comprehended.

What is the average age of undergraduate students attending American uni-
versities for each of the past 10 years? Has it been changing? How much? What
about the Graduate Record Examination (GRE) scores of graduate students over
the past decade—has that average been changing? One way to show the change is
to construct a graph portraying the average age or GRE score for each of the 10
years. These questions illustrate the use of averages and graphs, additional tools
that are helpful for describing data.

We will explore descriptive procedures in later chapters, but for the present
let’s consider the following situation. Professor Tu, your statistics instructor, has
given a test of elementary mathematics on the first day of class. She arranges the
test scores in order of magnitude, and she sees that the distance between the high-
est and lowest scores is not great and that the class average is higher than normal.
She is pleased because the general level of preparation seems to be good and the
group is not exceedingly diverse in its skills, which should make her teaching job
easier. And you are pleased, too, for you learn that your performance is better than
that of 90% of the students in your class. This scenario illustrates the use of more
tools of descriptive statistics: the frequency distribution, which shows the scores in
ordered arrangement; the percentile, a way to describe the location of a person’s
score relative to scores of others in a group; and the range, which measures the
variability of scores.

Because they each pertain to a single variable—age, GRE scores, and so on—
the preceding examples involve univariate procedures for describing data. But
often researchers are interested in describing data involving two characteristics
of a person (or object) simultaneously, which call for bivariate procedures. For
example, if you had information on 25 people concerning how many friends each
person has (popularity) and how outgoing each person is (extroversion), you
could see whether popularity and extroversion are related. Is popularity greater
among people with higher levels of extroversion and, conversely, lower among
people lower in extroversion? The correlation coefficient is a bivariate statistic that

1We are purists with respect to the pronunciation of this important noun (“day-tuh”) and its plural sta-
tus. Regarding the latter, promise us that you will recoil whenever you hear an otherwise informed
person utter, “The data is. . . .” Simply put, data are.

2 Chapter 1 Introduction



describes the nature and magnitude of such relationships, and a scatterplot is a help-
ful tool for graphically portraying these relationships.

Regardless of how you approach the task of describing data, never lose sight of
the principle underlying the use of descriptive statistics: The purpose is to organize
and summarize data so the data are more readily comprehended and commu-
nicated. When the question “Should I use statistics?” comes up, ask yourself,
“Would the story my data have to tell be clearer if I did?”

1.3 Inferential Statistics

What is the attitude of taxpayers toward, say, the use of federal dollars to support
private schools? As you can imagine, pollsters find it impossible to put such ques-
tions to every taxpayer in this country! Instead, they survey the attitudes of a ran-
dom sample of taxpayers, and from that knowledge they estimate the attitudes of
taxpayers as a whole—the population. Like any estimate, this outcome is subject
to random “error” or sampling variation. That is, random samples of the same pop-
ulation don’t yield identical outcomes. Fortunately, if the sample has been chosen
properly, it is possible to determine the magnitude of error that is involved.

The second branch of statistical practice, known as inferential statistics, pro-
vides the basis for answering questions of this kind. These procedures allow one
to account for chance error in drawing inferences about a larger group, the popu-
lation, on the basis of examining only a sample of that group. A central distinction
here is that between statistic and parameter. A statistic is a characteristic of a
sample (e.g., the proportion of polled taxpayers who favor federal support of
private schools), whereas a parameter is a characteristic of a population (the pro-
portion of all taxpayers who favor such support). Thus, statistics are used to esti-
mate, or make inferences about, parameters.

Inferential statistics permit conclusions about a population, based on the char-
acteristics of a sample of the population.

Another application of inferential statistics is particularly helpful for evaluating
the outcome of an experiment. Does a new drug, Melo, reduce hyperactivity
among children? Suppose that you select at random two groups of hyperactive chil-
dren and prescribe the drug to one group. All children are subsequently observed
the following week in their classrooms. From the outcome of this study, you find
that, on average, there is less hyperactivity among children receiving the drug.

Now some of this difference between the two groups would be expected even
if they were treated alike in all respects, because of chance factors involved in the
random selection of groups. As a researcher, the question you face is whether
the obtained difference is within the limits of chance sampling variation. If certain
assumptions have been met, statistical theory can provide the basis for an answer.
If you find that the obtained difference is larger than that can be accounted for by
chance alone, you will infer that other factors (the drug being a strong candidate)
must be at work to influence hyperactivity.

This application of inferential statistics also is helpful for evaluating the out-
come of a correlational study. Returning to the preceding example concerning the

1.3 Inferential Statistics 3



relationship between popularity and extroversion, you would appraise the obtained
correlation much as you would appraise the obtained difference in the hyper-
activity experiment: Is this correlation larger than what would be expected from
chance sampling variation alone? If so, then the traits of popularity and extrover-
sion may very well be related in the population.

1.4 The Role of Statistics in Educational Research

Statistics is neither a beginning nor an end. A problem begins with a question rooted
in the substance of the matter under study. Does Melo reduce hyperactivity? Is pop-
ularity related to extroversion? Such questions are called substantive questions.2

You formulate the question, which is informed by a careful consideration of relevant
theory, associated research, and due regard for the field of educational practice.
You then decide on the appropriate methodology for exploring the question
empirically—that is, using data.

Once you have diligently crafted the substantive question—and only then—it is
now time for statistics to play a part. Let’s say your study calls for averages (as in
the case of the hyperactivity experiment). You calculate the average for each group
and raise a statistical question: Are the two averages so different that sampling var-
iation alone cannot account for the difference? Statistical questions differ from sub-
stantive questions in that the former are questions about a statistical index—in this
case, the average. If, after applying the appropriate statistical procedures, you find
that the two averages are so different that it is not reasonable to believe chance
alone could account for it, you have made a statistical conclusion—a conclusion
about the statistical question you raised.

Now back to the substantive question. If certain assumptions have been met
and the conditions of the study have been carefully arranged, you may be able to
conclude that the drug does make a difference, at least within the limits tested in
your investigation. This is your final conclusion, and it is a substantive conclusion.
Although the substantive conclusion derives partly from the statistical conclusion,
other factors must be considered. As a researcher, therefore, you must weigh both
the statistical conclusion and the adequacy of your methodology in arriving at the
substantive conclusion.

It is important to see that although there is a close relationship between the
substantive question and the statistical question, the two are not identical. You
will recall that a statistical question always concerns a statistical property of the
data (e.g., an average or a correlation). Often, alternative statistical questions can
be applied to explore the particular substantive question. For instance, one might
ask whether the proportion of students with very high levels of hyperactivity dif-
fers beyond the limits of chance variation between the two conditions. In this
case, the statistical question is about a different statistical index: the proportion
rather than the average.

Thus, part of the task of mastering statistics is to learn how to choose among,
and sometimes combine, different statistical approaches to a particular substantive
question. When designing a study, the consideration of possible statistical analyses

2The substantive question also is called the research question.

4 Chapter 1 Introduction



to be performed should be situated in the course of refining the substantive question
and developing a plan for collecting relevant data.

To sum up, the use of statistical procedures is always a middle step; they are a
technical means to a substantive end. The argument we have presented can be
illustrated as follows:

Substantive
question

Statistical
question

Statistical
conclusion

Substantive
conclusion

1.5 Variables and Their Measurement

Descriptive and inferential statistics are applied to variables.

A variable is a characteristic (of a person, place, or thing) that takes on differ-
ent values.

Variables in educational research often (but not always) reflect characteristics
of people—academic achievement, age, leadership style, intelligence, educational
attainment, beliefs and attitudes, and self-efficacy, to name a few. Two nonpeople
examples of variables are school size and brand of computer software. Although sim-
ple, the defining characteristic of a variable—something that varies—is important to
remember. A “variable” that doesn’t vary sufficiently, as you will see later, can
sabotage your statistical analysis.3

Statistical analysis is not possible without numbers, and there cannot be num-
bers without measurement.

Measurement is the process of assigning numbers to the characteristics you
want to study.

For example, “20 years” may be the measurement for the characteristic, age, for a
particular person; “115” may be that person’s measurement for intelligence; on
a scale of 1 to 5, “3” may be the sociability measurement for this person; and
because this hypothetical soul is female, perhaps she arbitrarily is assigned a value
of “2” for sex (males being assigned “1”).

But numbers can be deceptive. Even though these four characteristics—
age, intelligence, sociability, and sex—all have been expressed in numerical form,
the numbers differ considerably in their underlying properties. Consequently, these
numbers also differ in how they should be interpreted and treated. We now turn
to a more detailed consideration of a variable’s properties and the corresponding
implications for interpretation and treatment.

3If this statement perplexes you, think through the difficulty of determining the relationship between, say,
“school size” and “academic achievement” if all of the schools in your sample were of an identical size.
How could you possibly know whether there is a relationship (correlation) between academic achieve-
ment and school size? True, this may be an absurd scenario. After all, who would ask such a question if all
schools were the same size?! But the problem of insufficient variability is far more subtle in practice, as
you will see in Chapter 7.
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Qualitative Versus Quantitative Variables

Values of qualitative variables (also known as categorical variables) differ in kind
rather than in amount. Sex is a good example. Although males and females clearly
are different in reproductive function (a qualitative distinction), it makes no sense
to claim one group is either “less than” or “greater than” the other in this regard
(a quantitative distinction).4 And this is true even if the arbitrary measurements
suggest otherwise! Other examples of qualitative variables are college major, mar-
ital status, political affiliation, county residence, and ethnicity.

In contrast, the numbers assigned to quantitative variables represent differing
quantities of the characteristic. Age, intelligence, and sociability, which you saw
above, are examples of quantitative variables: A 40-year-old is “older than” a
10-year-old; an IQ of 120 suggests “more intelligence” than an IQ of 90; and a child
with a sociability rating of 5 presumably is more sociable than the child assigned
a 4. Thus, the values of a quantitative variable differ in amount. As you will see
shortly, however, the properties of quantitative variables can differ greatly.

Scales of Measurement

In 1946, Harvard psychologist S. S. Stevens wrote a seminal article on scales of mea-
surement, in which he introduced a more elaborate scheme for classifying variables.
Although there is considerable debate regarding the implications of his typology for
statistical analysis (e.g., see Gaito, 1980; Stine, 1989), Stevens nonetheless provided
a helpful framework for considering the nature of one’s data. A variable, Stevens
argued, rests on one of four scales: nominal, ordinal, interval, or ratio.

Nominal scales Values on a nominal scale merely “name” the category to
which the object under study belongs. As such, interpretations must be limited
to statements of kind rather than amount. (A qualitative variable thus represents
a nominal scale.) Take ethnicity, for example, which a researcher may have
coded 1 Italian, 2 Irish, 3 Asian, 4 Hispanic, 5 African American, and
6 Other.5 It would be perfectly appropriate to conclude that, say, a person assigned
“1” (Italian, we trust) is different from the person assigned “4” (Hispanic), but you
cannot demand more of these data. For example, you could not claim that because
3 5, Asian is “less than” African American; or that an Italian, when added to an
Asian, begets an Hispanic because 1 3 4 . The numbers don’t mind, of course,
but it still makes no sense. The moral throughout this discussion is the same: One
should remain forever mindful of the variable’s underlying scale of measurement and
the kinds of interpretations and operations that are sensible for that scale.

Ordinal scales Unlike nominal scales, values on an ordinal scale can be
“ordered” to reflect differing degrees or amounts of the characteristic under study.
For example, rank ordering students based on when they completed an in-class
exam would reflect an ordinal scale, as would ranking runners according to when

4Although males and females, on average, do differ in amount on any number of variables (e.g., height,
strength, annual income), the scale in question is no longer sex. Rather, it is the scale of the other vari-
able on which males and females are observed to differ.
5Each individual must fall into only one category (i.e., the categories are mutually exclusive), and the
five categories must represent all ethnicities included among the study’s participants (i.e., the categories
are exhaustive).
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they crossed the finish line. You know that the person with the rank of 1 finished
the exam sooner, or the race faster, than individuals receiving higher ranks.6

But there is a limitation to this additional information: The only relation implied
by ordinal values is “greater than” or “less than.” One cannot say how much
sooner the first student completed the exam compared to the third student, or
that the difference in completion time between these two students is the same
as that between the third and fourth students, or that the second-ranked student
completed the exam in half the time of the fourth-ranked student. Ordinal
information simply does not permit such interpretations.

Although rank order is the classic example of an ordinal scale, other examples
frequently surface in educational research. Percentile ranks, which we take up in
Chapter 2, fall on an ordinal scale: They express a person’s performance relative
to the performance of others (and little more). Likert-type items, which many
educational researchers use for measuring attitudes, beliefs, and opinions (e.g.,
1 strongly disagree, 2 disagree, and so on), are another example. Socio-
economic status, reflecting such factors as income, education, and occupation, often
is expressed as a set of ordered categories (e.g., 1 lower class, 2 middle class,
3 upper class) and, thus, qualifies as an ordinal scale as well.

Interval scales Values on an interval scale overcome the basic limitation of
the ordinal scale by having “equal intervals.” The 2-point difference between, say,
3 and 5 on an interval scale is the same—in terms of the underlying characteristic
being measured—as the difference between 7 and 9 or 24 and 26. Consider an or-
dinary Celsius thermometer: A drop in temperature from 30 C to 10 C is equiva-
lent to a drop from 50 C to 30 C.

The limitation of an interval scale, however, can be found in its arbitrary zero.
In the case of the Celsius thermometer, for example, 0 C is arbitrarily set at the
point at which water freezes (at sea level, no less). In contrast, the absence of heat
(the temperature at which molecular activity ceases) is roughly −273 C. As
a result, you could not claim that a 30 C day is three times as warm as a 10 C
day. This would be the same as saying that column A in Figure 1.1 is three times

30°

0° 0°

–273° (absolute zero)

10°

A B

Figure 1.1 Comparison of 30 and
10 with the absolute zero on the
Celsius scale.

6Although perhaps counterintuitive, the convention is to reserve low ranks (1, 2, etc.) for good perfor-
mance (e.g., high scores, few errors, fast times).
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as tall as column B. Statements involving ratios, like the preceding one, cannot be
made from interval data.

What are examples of interval scales in educational research? Researchers typ-
ically regard composite measures of achievement, aptitude, personality, and atti-
tude as interval scales. Although there is some debate as to whether such measures
yield truly interval data, many researchers (ourselves included) are comfortable
with the assumption that they do.

Ratio scales The final scale of measurement is the ratio scale. As you may
suspect, it has the features of an interval scale and it permits ratio statements. This
is because a ratio scale has an absolute zero. “Zero” weight, for example, rep-
resents an unequivocal absence of the characteristic being measured: no weight.
Zip, nada, nothing. Consequently, you can say that a 230-pound linebacker weighs
twice as much as a 115-pound jockey, a 30-year-old is three times the age of a
10-year-old, and the 38-foot sailboat Adagio is half the length of 76-foot White
Wings—for weight, age, and length are all ratio scales.

In addition to physical measures (e.g., weight, height, distance, elapsed
time), variables derived from counting also fall on a ratio scale. Examples in-
clude the number of errors a student makes on a reading comprehension task;
the number of friends one reports having; the number of verbal reprimands a
high school teacher issues during a lesson; or the number of students in a class,
school, or district.

As with any scale, one must be careful when interpreting ratio scale data.
Consider two vocabulary test scores of 10 and 20 (words correct). Does 20 reflect
twice the performance of 10? It does if one’s interpretation is limited to perfor-
mance on this particular test (“You knew twice as many words on this list as
I did”). However, it would be unjustifiable to conclude that the student scoring 20
has twice the vocabulary as the student scoring 10. Why? Because “0” on this test
does not represent an absence of vocabulary; rather, it represents an absence of
knowledge of the specific words on this test. Again, proper interpretation is cri-
tical with any measurement scale.

1.6 Some Tips on Studying Statistics

Is statistics a hard subject? It is and it isn’t. Learning the “how” of statistics re-
quires attention, care, and arithmetic accuracy, but it is not particularly difficult.
Learning the “why” of statistics varies over a somewhat wider range of difficulty.

What is the expected reading rate for a book about statistics? Rate of reading
and comprehension differ from person to person, of course, and a four-page
assignment in mathematics may require more time than a four-page assignment in,
say, history. Certainly, you should not expect to read a statistics text like a novel,
or even like the usual history text. Some parts, like this chapter, will go faster; but
others will require more concentration and several readings. In short, do not feel
cognitively challenged or grow impatient if you can’t race through a chapter and,
instead, find that you need time for absorption and reflection. The formal logic of
statistical inference, for example, is a new way of thinking for most people and
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requires some getting used to. Its newness can create difficulties for those who are
not willing to slow down. As one of us was constantly reminded by his father,
“Festina lente!”7

Many students expect difficulty in the area of mathematics. Ordinary arith-
metic and some familiarity with the nature of equations are needed. Being able to
see “what goes on” in an equation—to peek under the mathematical hood, so
to speak—is necessary to understand what affects the statistic being calculated,
and in what way. Such understanding also is helpful for spotting implausible
results, which allows you to catch calculation errors when they first occur (rather
than in an exam). Appendix A is especially addressed to those who feel that their
mathematics lies in the too-distant past to assure a sense of security. It contains a
review of elementary mathematics of special relevance for study of this book. Not
all these understandings are required at once, so there will be time to brush up in
advance of need.

Questions and problems are included at the end of each chapter. You should
work enough of these to feel comfortable with the material. They have been
designed to give practice in how-to-do-it, in the exercise of critical evaluation, in
development of the link between real problems and methodological approach,
and in comprehension of statistical relationships. There is merit in giving some
consideration to all questions and problems, even though your instructor may for-
mally assign fewer of them.

A word also should be said about the cumulative nature of a course in ele-
mentary statistics: What is learned in earlier stages becomes the foundation for
what follows. Consequently, it is most important to keep up. If you have difficulty
at some point, seek assistance from your instructor. Don’t delay. Those who think
matters may clear up if they wait may be right, but the risk is greater here—
considerably so—than in courses covering material that is less interdependent. It
can be like attempting to climb a ladder with some rungs missing, or to under-
stand an analogy when you don’t know the meaning of all the words. Cramming,
never very successful, is least so in statistics. Success in studying statistics depends
on regular work, and, if this is done, relatively little is needed in the way of
review before examination time.

Finally, always try to “see the big picture.” First, this pays off in computa-
tion. Look at the result of your calculation. Does it make sense? Be suspicious if
you find the average to be 53 but most of the numbers are in the 60s and 70s.
And dismiss outright any result that defies plausibility, such as a statistic that falls
beyond its possible limits. Remember, the eyeball is the statistician’s most power-
ful tool. Second, because of the ladderlike nature of statistics, also try to relate
what you are currently studying to concepts, principles, and techniques you
learned earlier. Search for connections—they are there. When this kind of effort
is made, you will find that statistics is less a collection of disparate techniques
and more a concerted course of study. Happily, you also will find that it is easier
to master!

7
“Make haste slowly!”
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